离散型(质量函数): E(X) = \sum_{i=1}^n x_i p_i 连续型(密度函数): E(X) = \int_{-\infty}^{\infty} x f(x) dx
函数期望:对任意函数 $h(X)$,
离散型:E\{h(X)\} = \sum_{i=1}^n h(x_i) p_i
连续型:E\{h(X)\} = \int_{-\infty}^{\infty} h(x) f(x) dx
例子:
掷骰子的期望值计算
E(X) = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5
定义:
\text{var}(X) = E\left[(X - \mu)^2\right], \quad \mu = E(X)
标准差 (Standard Deviation):