设总体$N$中变量$v$的:
\mu = \frac{1}{N}\sum_{i=1}^N v_i \quad (\text{总体均值}) \\ \sigma^2 = \frac{1}{N}\sum_{i=1}^N (v_i - \mu)^2 \quad (\text{总体方差})
二元变量特例:
当变量$v$是二元变量(取0/1值),设总体比例为$p$,则有:
\mu = p,\quad \sigma^2 = p(1-p)
单次抽样:
设$X$为抽取的观测值,则:
E(X) = \mu,\quad \text{var}(X) = \sigma^2
有放回抽样:
对容量$n$的样本$X_1,...,X_n$:
\text{样本均值} \ \overline{X} = \frac{1}{n}\sum_{i=1}^n X_i \\ E(\overline{X}) = \mu,\quad \text{var}(\overline{X}) = \frac{\sigma^2}{n}
实例分析:
从股票收益率总体中抽取10天收益率数据(单位:%): 0.8, 1.2, -0.5, 2.1, 1.5, 0.3, -0.2, 1.8, 0.9, 1.1
样本均值计算:
\overline{x} = \frac{1}{10}(0.8+1.2+\cdots+1.1) = 0.9\%
学习建议: