<aside> 💡
查看全集:概率与统计/Probability & Statistics
</aside>
随机变量(Random Variable)是定义在样本空间上的实值函数,记作$X: \Omega \to \mathbb{R}$
关键特性:
对离散型随机变量$X$,定义:
$$ p(a) = P(X = a) $$
满足:
$$ \sum_{i=1}^{\infty} p(x_i) = 1 \quad \text{且} \quad p(x_i) \geq 0 $$
示例:
| a | 1 | 2 | 4 |
|---|---|---|---|
| p(a) | 1/2 | 1/4 | 1/4 |
定义:
$$ X \sim \text{Bernoulli}(p) \Rightarrow p(x) = \begin{cases} p, & x=1 \ (\text{成功}) \\ 1-p, & x=0 \ (\text{失败}) \end{cases} $$