<aside> 💡
查看全集:线性代数/Linear Algebra
</aside>
对于集合 $S = \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \} \subset \mathbb{R}^n$,若方程
$$ c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_k \mathbf{u}_k = \mathbf{0} $$
仅有零解 $c_1 = c_2 = \cdots = c_k = 0$,则称 S 为线性无关集。否则称为线性相关集。
判断集合 $S = \{ (1,2), (3,4) \}$ 是否线性无关:
构造方程 $c_1(1,2) + c_2(3,4) = (0,0)$,解得 $c_1 = 0, c_2 = 0$,故线性无关。