<aside> 💡
查看全集:概率与统计/Probability & Statistics
</aside>
联合累积分布函数用于描述两个随机变量共同的概率行为:
$$ F(x, y) = P(X \leq x, Y \leq y), \quad -\infty < x < \infty, -\infty < y < \infty $$
$$ F_X(x) = \lim_{y \to \infty} F(x, y) $$
$$ F_Y(y) = \lim_{x \to \infty} F(x, y) $$
联合事件的概率:
$$ P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F(a, b) $$
推导提示:利用概率的容斥原理,通过Venn图理解区域重叠
矩形区域概率:
$$ P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1) $$
当X和Y均为离散型随机变量时,联合pmf定义为:
$$ p(i, j) = P(X = i, Y = j) $$