联合累积分布函数用于描述两个随机变量共同的概率行为:
F(x, y) = P(X \leq x, Y \leq y), \quad -\infty < x < \infty, -\infty < y < \infty
F_X(x) = \lim_{y \to \infty} F(x, y)
F_Y(y) = \lim_{x \to \infty} F(x, y)
联合事件的概率:
P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F(a, b)
推导提示:利用概率的容斥原理,通过Venn图理解区域重叠
矩形区域概率:
P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1)
当X和Y均为离散型随机变量时,联合pmf定义为:
p(i, j) = P(X = i, Y = j)
P(X = i) = \sum_j p(i, j)
P(Y = j) = \sum_i p(i, j)
设联合pmf为:
p(i,j) = \begin{cases} 0.2 & (i,j)=(1,1) \\ 0.3 & (i,j)=(1,2) \\ 0.5 & (i,j)=(2,1) \\ 0 & \text{其他} \end{cases}
求X的边际分布: